Задать вопрос
1 января, 13:50

А как составить решето Эратосфена

+1
Ответы (1)
  1. 1 января, 17:04
    0
    Для нахождения всех простых чисел не больше заданного числа n, следуя методу Эратосфена, нужно выполнить следующие шаги: Выписать подряд все целые числа от двух до n (2, 3, 4, ..., n). Пусть переменная p изначально равна двум - первому простому числу. Зачеркнуть в списке числа от 2p до n считая шагами по p (это будут числа кратные p: 2p, 3p, 4p, ...). Найти первое незачеркнутое число в списке, большее чем p, и присвоить значению переменной p это число. Повторять шаги 3 и 4, пока возможно. Теперь все незачеркнутые числа в списке - это все простые числа от 2 до n. На практике, алгоритм можно улучшить следующим образом. На шаге № 3 числа можно зачеркивать начиная сразу с числа p2, потому что все составные числа меньше него уже будут зачеркнуты к этому времени. И, соответственно, останавливать алгоритм можно, когда p2 станет больше, чем n. Также, все p большие чем 2 - нечётные числа, и поэтому для них можно считать шагами по 2p, начиная с p2.

    Я просто помог ты там что тебе надо решишь
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «А как составить решето Эратосфена ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы