Задать вопрос
6 января, 04:56

Последовательность Фибоначчи определяется так: а (0) = 1, а (1) = 1, а (к) = а (к-1) + а (к-2) при к>2. Дано n, вычислить а (n) (в паскале)

+2
Ответы (1)
  1. 6 января, 05:49
    +1
    1) Решение методом рекурсии.

    Программа проста в понимании, но неэффективна при больших значениях

    var

    n: integer;

    function f (i: integer) : longint;

    begin

    if i < 2 then

    f : = 1

    else

    f : = f (i - 1) + f (i - 2) ;

    end;

    begin

    read (n) ;

    writeln (f (n)) ;

    end.

    2) Решение методом динамического программирования. Намного быстрее метода с рекурсией.

    var

    i, n: integer;

    f: array[0 ... 50] of longint;

    begin

    read (n) ;

    f[0] : = 1;

    f[1] : = 1;

    for i : = 2 to n do

    f[i] : = f[i - 1] + f[i - 2];

    writeln (f[n]) ;

    end.

    3) Решение методом моделирования. Использует меньше памяти.

    var

    n, a, b, i: integer;

    begin

    read (n) ;

    if n < 2 then

    a : = 1

    else

    begin

    a : = 0;

    b : = 1;

    for i : = 0 to n do

    begin

    b : = a + b;

    a : = b - a;

    end;

    end;

    writeln (a) ;

    end.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Последовательность Фибоначчи определяется так: а (0) = 1, а (1) = 1, а (к) = а (к-1) + а (к-2) при к>2. Дано n, вычислить а (n) (в паскале) ...» по предмету 📘 Информатика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по информатике
Решите задачу на Паскале. Числа Фибоначчи определяются как а (0) = 1, а (1) = 1, а (i) = a (i-1) + a (i-2). Найти десятое число Фибоначчи. Найти : a) N-ое число Фибоначчи б) Сумму первых N чисел Фибоначчи
Ответы (1)
Последовательность Фибоначчи определяется следующим образом: первые два члена последовательности равны 1, а каждый следующий равен сумме двух предыдущих. То есть числами Фибоначчи являются 1,1,2,3,5,8,13, ... Вводится натуральное число.
Ответы (1)
Дата рождения. Профессор Бит Байтович Алгоритмович черезвычайно гордится своим гениальным, по его мнению сыном.
Ответы (1)
Задача А Число Фибоначчи это числовая последовательность, в которой первые два числа единицы, а каждое последующее равно сумме двух предыдущих. Дано натуральное число N (2< N < 2*10^9). Найти два ближайших к нему числа Фибоначчи.
Ответы (1)
Питон. Последовательность Фибоначчи определяется так: φ0 = 0, φ1 = 1, φn = φn-1 + φn-2. По данному числу n определите n-е число Фибоначчи φn.
Ответы (1)