Задать вопрос
9 февраля, 23:28

На сторонах правильного шестиугольника как на диаметрах в его внутреннюю часть

построены полуокружности. Найдите площадь образовавшегося шестиугольника, если

длина стороны данного шестиугольника равна a.

+5
Ответы (1)
  1. 9 февраля, 23:40
    0
    Если провести все диагонали в шестиугольнике, то они его разрежут на шесть равных равносторонних треугольников со стороной, равной стороне шестиугольника. Значит площадь треугольника с той же стороной в шесть раз меньше площади шестиугольника.

    Выходит, если сторону шестиугольника увеличим в корень из 6 раз, (площадь при этом увеличится в 6 раз) и построим на ней равносторонний треугольник, задача окажется решённой.

    Так что дело сводится к тому, чтобы построить отрезок длины корень из 6 при заданном отрезке длины 1. Это можно сделать с помощью теоремы Пифагора - построить два отрезка длины 2 и корень из 2 (последний - диагональ единичного квадрата). На этих отрезках строим прямоугольный треугольник. Его гипотенуза - нужный нам отрезок.

    Дальше дело техники - циркулем на стороне отрезка радиусом, равным длине отрезка строим две полуокружности, одну - с центром в начале отрезка, другую - с центром в конце. Точку их пересечения соединяем с концами отрезка - получится искомый треугольник.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «На сторонах правильного шестиугольника как на диаметрах в его внутреннюю часть построены полуокружности. Найдите площадь образовавшегося ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы