Задать вопрос
23 февраля, 16:21

Периметр прямоугольника равен 36 см. Одна из его сторон на 6 см больше другой. Найти расстояние от точки пересечения диагоналей прямоугольника до его сторон.

+5
Ответы (1)
  1. 23 февраля, 19:13
    0
    X+x+x+6+x+6=364x+12=364x=24x=6 малая сторона6+6=12 большая сторонаРассмотрим прямоугольный треугольник, в котором катеты оавны 12 и 6, следовательно по теореме Пифагора найдем гипотенузу, которая является диагональю12 в квадрате+6 в квадрате равно АС в квадратезначит АС=корень из 180 Пусть точка пересечения диагоналей точка ОРассмотрим треугольник АОВ основание 12, а боковые стороны равны корень из 180:2 Равнобедренный треугольникиспустим из вершины к основанию высоту ОН и получим что АН равны 12:2 и найдем по теореме Пифагора эту высоту (180:4-36) все под корнемзначит ОН=3 Ответ: 3
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Периметр прямоугольника равен 36 см. Одна из его сторон на 6 см больше другой. Найти расстояние от точки пересечения диагоналей ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы