Задать вопрос
16 декабря, 20:41

Две вершины центр вписанной окружности и точка пересечения высот остроугольного треугольника лежат на одной окружности Найдите угол при Третьей вершине

+5
Ответы (1)
  1. 17 декабря, 00:10
    0
    Пусть окружность проходит через вершины А и B треугольника ABC, H - точка пересечения высот и О - центр вписанной окружности. Т. к. О - точка пересечения биссектрис, то ∠AOB=90°+∠C/2. Т. к. ∠AOB и ∠AHB опираются на общую дугу и ∠AHB - смежный к углу равному ∠С, то ∠AOB=∠AHB=180°-∠С. Итак, 90°+∠C/2=180°-∠С, откуда ∠С=60°.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Две вершины центр вписанной окружности и точка пересечения высот остроугольного треугольника лежат на одной окружности Найдите угол при ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Центром вписанной в треугольник окружности является: 1) точка пересечения высот треугольника 2) точка пересечения биссектрис треугольника 3) точка пересечения медиан треугольника 4) точка пересечения серединных перпендикуляров треугольника
Ответы (1)
Центр вписанной в треугольник окружности совпадает с точкой пересечения его: 1) медиан 2) биссектрис 3) высот 4) серединных перпендикуляров Окружность называется вписанной около многоугольника если: 1) Все его стороны касаются окружности 2) Все его
Ответы (1)
Укажите номера верных утверждений: 1) Центром описанной окружности треугольника является точка пересечения его высот 2) центром описанной окружности треугольника является точка пересечения его медиан 3) центром описанной окружности треугольника
Ответы (2)
Две вершины треугольника и точка пересечения медиан лежат в одной плоскости α. Определите, будет ли лежать в этой плоскости точка пересечения высот треугольника. Ответ обоснуйте, основываясь на аксиомах стереометрии и следствиях из них.
Ответы (1)
Угол между двумя высотами остроугольного треугольника авс равен 60°, и точка пересечения высот делит одну из них в отношении 2:1, считая от вершины треугольника. докажите, что треугольник авс равносторонний.
Ответы (1)