Задать вопрос
26 июля, 07:09

Найдите радиус окружности, вписанной в треугольник BCD, если она касается стороны BC в точке P и известно, что BD=BC = 15 см, CP=12 см

+4
Ответы (2)
  1. 26 июля, 07:34
    0
    Треугольник ДВС равнобедренный. Значит, биссектрисы углов при основании треугольника делят его на равные доли. Центр окружности - точка О. Точка касания окружности в основании треугольника - Н. Треугольник ОНС и треугольник ОРС равны. Оба прямоугольные и гипотенуза общая, катеты равны радиусу вписанной окружности. Отсюда РС=НС=12 см. Но треугольник ДОС равнобедреный. У него углы при основании равны, значит ДН=НС=12 см. Т. е. ОН делит ДС пополам и является перпендикуляром, а ВО - биссектриса угла В. Смежные углы ВОР, РОС и СОН в сумме дают 180 градусов. Значит ВН - прямая линия! Она медиана, высота и биссектриса при вершине угла В равнобедренного треугольника. Находи её по теореме Пифагора. Она равна корень из (225-144) = 9 см. А теперь из треугольника ВОР ищем ОР. (9-х) ^2 - x^2=9 Отсюда

    81-18 х+x^2-x^2=9 18x=72 x=4. Радиус окружности, вписанной в треугольник ВСД равен 4 см.
  2. 26 июля, 10:00
    0
    Отрезки касательных из одной точки к окружности равны. Поэтому сторона CD (основание) = 24 см (треугольник BCD - равнобедренный, значит отрезки сторон от точек касания вписанной окружности до вершин C и D - равны по12 см). тогда по формуле радиуса окружности вписанной в равнобедренный треугольник:

    r = b/2√[ (2a-b) / (2a+b) ], где a - боковая сторона, b - основание)

    имеем: 12√6/54 = 12/3 = 4 см.

    или по более общей формуле радиуса окружности вписанной в треугольник через полупериметр:

    r = √ (p-a) (p-b) (p-c) / p = √12*12*3/27 = 4 см (р - полупериметр (15+15+24) : 2 = 27)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите радиус окружности, вписанной в треугольник BCD, если она касается стороны BC в точке P и известно, что BD=BC = 15 см, CP=12 см ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
1. Около окружности, радиус которой равен 12, описан правильный шестиугольник. Найдите радиус окружности, описанной около этого шестиугольника. 2 Найдите радиус окружности, вписанной в правильный шестиугольник со стороной 54. 3.
Ответы (1)
Найдите радиус окружности, вписанной в треугольник BCD, если она касается стороны ВС в точке Р и известно, что BD = BC = 15 см, СР = 12 см.
Ответы (1)
8. Найдите радиус окружности, вписанной в треугольник BCD, если она касается стороны ВС в точке Р и известно, что BD = BC = 15 см, СР = 12 см.
Ответы (1)
1. Радиус окружности, вписанной в равносторонний треугольник равнен 6 корней из 3 см. Найдите периметр окружности. 2. Прямая АВ касается окружности с центром в точке О и радиусом, равным 9 см, в точке В. Найдите АВ, если АО=41 см. 3.
Ответы (1)
Две окружности w1 и w2 разных радиусов пересекаются в точках C и D. Точка А лежит на окружности w1, точка B - на окружности w2, Прямая АС касается окружности w2 в точке С, прямая BC касается окружности w1 тоже в точке C.
Ответы (1)