Задать вопрос
8 июня, 02:45

В треугольнике АВС на стороне ВС взята точка N так, что NC=3BN; на продолжении стороны АС за точку А взята точка М так, что МА=АС. Прямая MN пересекает сторону АВ в точке F. Найдите отношение BF:FA.

+3
Ответы (1)
  1. 8 июня, 06:02
    0
    Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую, которая пересечёт сторону ВС в точке Р.

    Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам.

    Но NC=3, значит, NP=1,5.

    Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ.

    Ответ: 2:3
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике АВС на стороне ВС взята точка N так, что NC=3BN; на продолжении стороны АС за точку А взята точка М так, что МА=АС. Прямая ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы