Задать вопрос
15 октября, 22:04

1. Дан треугольник со сторонами 3,5 см, 4 см и 5 см. Большая сторона подобного ему треугольника равна 6 см. Найдите стороны второго треугольника.

2. Стороны данного треугольника 15 см, 20 см, 30 см. Найдите стороны подобного ему треугольника, периметр которого равен 26 см.

3. Отрезок AD является биссектрисой треугольника АВС, Найдите отрезки BD и CD, если AB=14 см, BC=20 см, AC=21 см

Если можно полное решение

+1
Ответы (1)
  1. 15 октября, 23:59
    0
    3,5*1,2=4,2 третья сторона подобного треугольника ответ: 6 см, 4,8 см, 4,2 см

    ИЛИ

    5^2 = 3^2 + 4^2, значит наш треугольник прямоугольный с гипотенузой = 5 и катетами = 3 и 4. Самый большой угол = 90 градусов.

    Допустим наш трегольник АВС (угол АВС = 90 градусов, гипотенуза АС = 5, АВ = 3, ВС = 4). Допустим, биссектриса ВЕ.

    По свойству биссектрисы АВ: ВС = АЕ: ЕС = 3:4. Допустим, что АЕ = 3 к, а ЕС = 4 к, АЕ + ЕС = АС = 5, то 7 к = 5; к = 5/7;

    АЕ = 15/7, ЕС = 20/7.

    Далее можно воспользоваться формулой: ВЕ = корень из (АВ*ВС - АЕ*ЕС) = корень из (12 - 300/49) = корень из (288/49) = (12*корень из 2) / 7.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «1. Дан треугольник со сторонами 3,5 см, 4 см и 5 см. Большая сторона подобного ему треугольника равна 6 см. Найдите стороны второго ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы