Задать вопрос
20 ноября, 08:55

Ребро куба равно 2, найдите расстояние между прямыми DC1 и CB1

+4
Ответы (1)
  1. 20 ноября, 10:47
    0
    Все, что курсивом - "теория", нужная для решения. В конце - само решение.

    Расстояние между скрещивающимися прямыми в общем случае находится так. Надо найти две параллельные плоскости, каждая из который содержит одну из прямых. Расстояние между этими плоскостями и будет искомым расстоянием.

    Плоскость A1DC1 содержит прямую DC1. Треугольник A1DC1 - равносторонний, что означает, что трехмерная фигура D1A1DC1 - правильная треугольная пирамида, и вершина D1 проектируется на основание A1DC1 в центр K правильного треугольника A1DC1, то есть D1K перпендикулярно плоскости A1DC1 (это - высота пирамиды).

    Кроме того, фигура BA1DC1 - тоже правильная треугольная пирамида (это - вообще правильный тетраэдр, все его ребра равны), и поэтому BK - высота этого тетраэдра к грани A1DC1, то есть BK перпендикулярно A1DC1.

    Через точку K можно провести только одну прямую, перпендикулярную плоскости A1DC1, и на этой прямой лежат точки B и D1.

    То есть, доказано, что плоскость A1DC1 перпендикулярна диагонали куба BD1.

    Точно также можно доказать, что BD1 перпендикулярно плоскости AB1C, и поэтому плоскости AB1C и A1DC1 параллельны. Но параллельность этих плоскостей и так очевидна, поскольку A1C1 II AC; A1D II B1C; и разумеется, AB1 II DC1; но для доказательства параллельности достаточно указать две пары параллельных прямых. Однако то, что обе эти плоскости перпендикулярны диагонали BD1 - важно.

    Если рассмотреть внимательнее тетраэдр BA1DC1, можно заметить, что плоскость AB1C пересекает "боковое ребро" BA1 в середине (диагонали квадрата A1B и AB1 делятся точкой пересечения пополам), поэтому сечение тетраэдра BA1DC1, параллельное грани тетраэдра A1DC1, - это такая "средняя плоскость", то есть она разделит пополам и остальные боковые ребра (BD и BC1, что можно увидеть и так) и, главное - высоту BK (по теореме Фалеса).

    Аналогично можно показать, что плоскость A1DC1 делит пополам высоту тетраэдра D1AB1C. Если обозначить K1 - центр треугольника AB1C, то получается D1K1 = KK1 = K1B;

    Все это - длинная теория, которую труднее набрать, чем понять.

    Поскольку KK1 - отрезок прямой BD1, перпендикулярной обеим плоскостям A1DC1 и AB1C, то это и есть расстояние между этими плоскостями, а заодно - и расстояние между скрещивающимися прямыми DC1 и CB1.

    Длина диагонали BD = 2√3, KK1 = 2√3/3;
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Ребро куба равно 2, найдите расстояние между прямыми DC1 и CB1 ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы