Задать вопрос
2 апреля, 03:50

Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны которого в четыре раза меньше сторон данного треугольника. Найдите площадь ABC, если площадь трапеции равна 30

+3
Ответы (1)
  1. 2 апреля, 04:31
    0
    Вообще просто. Так как известно что стороны в четыре раза меньше - тогда получается, что отсечен подобный треугольник с коэффициентом подобия = 1/4. А есть такое замечательное свойство, что высота у подобных треугольников отличается на коэффициент подобия. А так как искомая величина - площадь = основание*высоту/2 то при перемножении коэффициент подобия перемножится и составит 1/16. Таким образом, площадь маленького отсеченного треугольника составит 1/16 от большого. Трапеция при этом - оставшаяся часть = 15/16=30. Отсюда следует, что 1/16 = 2.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны которого в четыре раза меньше сторон данного ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы