Задать вопрос
7 июля, 07:02

Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом

+1
Ответы (1)
  1. 7 июля, 08:08
    0
    Как известно - параллелограм - это такой 4-ех угольник, у которого противоположные стороны попарно параллельны, а ромб - это частный случай параллелограмма, у которого все стороны равны между собой. Таким образом, чтобы доказать, что параллелограм - это ромб, нужно доказать, что его две смежные стороны равны между собой. Если диагональ параллелограмма разделила его угол пополам, то оба полученных треугольника с общей стороной - диагональю будут являться равнобедренными, т. к. их боковые углы - вертикальные при пересечении двух параллельных прямых секущей. А значит смежные стороны параллелограмма равны, а он - ромб.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы