Задать вопрос
6 сентября, 05:14

Три числа, сумма которых равна 114, можно рассматривать как три последовательных члена геометрической прогрессии или как 1, 4, 25-й члены арифметической прогрессии. Найдите эти числа

+5
Ответы (1)
  1. 6 сентября, 08:11
    0
    Пусть b1, b2, b3 члены геометрической прогрессии и a1, a4, a25 соответственно арифметической, из условия следует что b1+b2+b3=114. Из свойств арифм прогрессии, приравнивая соответствующие члены перепишем их как b1=a1, b2=a1+3d, b3=a1+24d суммируя получаем b1+b2+b3=3a1+27d=114 откуда a1+9d=38, выразим отсюда a1=38-9d так как b2/b1=b3/b2 или что тоже самое (a1+3d) / a1 = (a1+24d) / (a1+3d) подставляя в уравнение, выражение a1=38-9d получаем (38-6d) / (38-9d) = (38+15d) / (38-6d) или (38-6d) (38-6d) = (38+15d) (38-9d) 18*38*d=171d^2 откуда d=0, d=4 при d=0 ответ b1=b2=b3=38, при d=4, a1=2 получаем b1=a1=2, b2=a4=14, b3=a25=98.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Три числа, сумма которых равна 114, можно рассматривать как три последовательных члена геометрической прогрессии или как 1, 4, 25-й члены ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
Дана арифметическая прогрессия: - 8; - 6,5; - 5; ...: А) Найдите разность арифметической прогрессии; Б) Вычислите десятый член арифметической прогрессии; В) Вычислите сумму десяти первых членов арифметической прогрессии;
Ответы (1)
1. Зная первые два члена арифметической прогрессии 3,4; -0,2; ..., найдите следующие за ними четыре ее члена. 2. В арифметической прогрессии (bn) известны b1=-0,8 и d=4. найдите b7.3.
Ответы (1)
1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32.
Ответы (1)
1. Найдите первый член арифметической прогрессии: а 1; а 2,4,8, ... А. 1. Б. 12. В.-4. Г.-1. 2. Дана арифметическая прогрессия 8,2; 6,6; ... Найдите номер члена этой прогрессии, равного - 15,8. А. 16. Б. 14. В. 17. Г. Нет такого номера. 3.
Ответы (1)