Задать вопрос
3 сентября, 04:51

Докажите, что при любом натуральном k значение выражения (k+1) в квадрате - (k-1) в квадрате делится на 4

+5
Ответы (1)
  1. 3 сентября, 05:26
    0
    (k+1) ^2 - (k-1) ^2 = k^2+2k+1-k^2+2k-1=4k

    4k при любом значении k разделится на 4 без остатка
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что при любом натуральном k значение выражения (k+1) в квадрате - (k-1) в квадрате делится на 4 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Докажите, что значение выражения (5+16m) - (9m-9) кратно 7 при любом натуральном значении. 2. Докажите, что значение выражения (7n+2) - (4n-7) кратно 3 при любом натуральном значении.
Ответы (1)
Докажи, что а) при любом натуральном значение n значение выражения n (n+5) - (n-3) (n+2) кратно 6 б) при любом натуральном значение n, большем 2, значение выражение (n-1) (n+) - (n-7) (n-5) кратно 12
Ответы (1)
8 класс 1. Докажите, что при любом натуральном n: n^3+11n делится на 6; 15^n+6 делится на 7; 5*4^2n+4*61^n делится на 9; 2. Докажите, что чётная натуральная степень числа 3, увеличенная на 7, кратна 8.
Ответы (1)
Выберите 3 верных утверждения: 1) число делится на 4 если последние две цифры образуют число кратное четырем 2) число делится на 11, если сумма его цифр делится на 11 3) если число делится на несколько взаимно простых чисел, то оно делится и на
Ответы (1)
верно ли утверждение6 а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)