Задать вопрос
21 февраля, 23:48

Известно, что сумма и произведение 2011 чисел, каждое из которых по абсолютной величине не превосходит 2011, равны нулю. Какое максимальное значение может принимать сумма квадратов этих чисел? Не понимаю решение этой задачи, объясните подробнее

+1
Ответы (1)
  1. 22 февраля, 01:56
    0
    Произведение равно о, если один из множителей равен 0, значит, среди 2011 чисел есть 0, останется 2010 чисел, не равных 0. Сумма равна о, если складывают противоположные числа, значи, таких пар противоположных чисел будет 1005. Поучаем 2011^2*1005+0^2 + (-2011) ^2*1005=2010*2011^2. А дальше простые арифметические действия.

    Всего чисел по условию 2011, среди них 0. Остается 2010 чисел, отличных от 0, следовательно, пар чисел 2010:2=1005
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Известно, что сумма и произведение 2011 чисел, каждое из которых по абсолютной величине не превосходит 2011, равны нулю. Какое максимальное ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Известно, что сумма и произведение 2015 чисел, каждое из которых по абсолютной величине не превосходят 2015, равны нулю. Какое максимальное значение может принимать сумма квадратов этих чисел?
Ответы (1)
Какое из утверждений неверно? 1. Если произведение двух чисел равно нулю, то хотя бы одно из этих чисел равно нулю 2. Если хотя бы одно из двух чисел равно нулю, то их произведение равно нулю 3.
Ответы (2)
1) найдите меньшее из 2 чисел, сумма которых равна 22, а сумма квадратов 250 2) найдите большее из 2 чисел, если их разность равна 4 а разность квадратов 104 3) среднее арифметическое двух чисел равно 7, а разность квадратов 56.
Ответы (1)
Мистер Фокс записал в тетради 300 чисел и вычислил сумму их квадратов. Мистер Форд увеличил каждое из чисел на единицу и посчитал сумму квадратов новых чисел. Оказалось, что суммы квадратов, найденные Фоксом и Фордом, равны.
Ответы (1)
Запишите в виде выражения: а) квадрат суммы чисел х и 1; б) сумму квадратов чисел а и b; в) разность квадратов чисел m и n; г) квадрат разности чисел m и n; д) удвоенное произведение квадратов чисел х и у;
Ответы (1)