Задать вопрос
27 августа, 05:24

Докажите, что если функция f (x) возрастает на промежутке 1, то функция g (x) = af (x) + b при а > 0 также возрастает на 1 а при а<0 - убывает на промежутке 1 при любом значении b

+4
Ответы (1)
  1. 27 августа, 06:19
    0
    Ого ... так сложно

    не повезло
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что если функция f (x) возрастает на промежутке 1, то функция g (x) = af (x) + b при а > 0 также возрастает на 1 а при а ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Как изменяется график функции y=2/x? а) возрастает; б) убывает; в) возрастает на промежутке (-бесконечность; 0), убывает на промежутке (0; +бесконечность) ; г) убывает на промежутке (-бесконечность; 0), возрастает на промежутке (0; +бесконечность)
Ответы (1)
Доказать что функция: 1) у = х2+5 возрастает на промежутке (0; + бесконечность) 2) у = х2-7 убывает на промежутке (- бесконечность; 0) 3) у = (х+1) 2 убывает на промежетке (+ бесконечность; -1) 4) у = (х-4) 2 возрастает на промежутке (4;
Ответы (1)
Верно ли? 1) Функция y=lg3^-x нечётна. 2) Если чётная функция возрастает на отрезке {1; 2}, то на отрезке [-2; -1] она тоже возрастает. 3) Если на интервале (a, b) функция y=sinx отрицательна, то на этом интервале функция y=cosx возрастает.
Ответы (1)
Докажите если функция у=f (x) возрастает на промежутке Х и а>0, то при любом значении b функция у=a*f (x) + b возрастает на Х
Ответы (1)
Известно, что функция g в промежутке (0; + ∞) принимает лишь отрицательные значения. Какие значения принимает функция в промежутке (-∞; 0), если: а) f - четная функция; б) f - нечетная функция.
Ответы (1)