Задать вопрос
4 апреля, 07:42

Доказать, что: 1) 8 (в 7 степени) - 2 (в 18 степени) делится на 14. 2) 79 (в 2 степени) + 79*11 делится на 30

+1
Ответы (1)
  1. 4 апреля, 10:21
    0
    1) (2^3) ^7-2^18=2^21-2^18=2^18 (2^3-1) = 7*2^18=14*2^17 это число делится на 14, так как состоит из множителей, один из которых 14

    2) 79^2+79*11=79 (79+11) = 79*90 это делится на 30 так как 90 делится на 30
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Доказать, что: 1) 8 (в 7 степени) - 2 (в 18 степени) делится на 14. 2) 79 (в 2 степени) + 79*11 делится на 30 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
A во 2 степени * на а в - 5 степени. (x в 3 степени) в - 2 степени. B в - 4 степени: 8 в - 3 степени. (x в 4 степени * x в - 7 степени) в минус 2 степени.
Ответы (1)
Представьте в виде степени: а) а в степени 6 умножить на а в степени - 3 б) b в степени - 1 умножить на b в степени - 3 в) с в степени - 1 умножить на c в степени 0 г) х в степени 6 : х в степени 8 д) у в степени 4 : у в степени - 2 е) z в степени -
Ответы (1)
1) 3 в 7 степени * 11 в седьмой степени / 33 в 6 степени 2) 28 в 6 степени / 7 в 5 степени * 4 в 5 степени 3) 5 в 8 степени * 9 в 5 степени / 45 в 5 степени 4) 3 в 16 степени * 2 в 10 степени / 54 в 5 степени 5) 36 в 5 степени / 2 в 9 степени * 3 в
Ответы (1)
Выберите 3 верных утверждения: 1) число делится на 4 если последние две цифры образуют число кратное четырем 2) число делится на 11, если сумма его цифр делится на 11 3) если число делится на несколько взаимно простых чисел, то оно делится и на
Ответы (1)
верно ли утверждение6 а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)