Задать вопрос
10 марта, 12:16

Докажите, что сумма двух последовательных степеней любого натурального числа делится на следующее за ним число

+4
Ответы (1)
  1. 10 марта, 15:29
    0
    X^n+x^ (n+1) = (x^n) * (1+x^1) = (x^n) * (1+x)

    а (1+х) и есть следующее число
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что сумма двух последовательных степеней любого натурального числа делится на следующее за ним число ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Выберите 3 верных утверждения: 1) число делится на 4 если последние две цифры образуют число кратное четырем 2) число делится на 11, если сумма его цифр делится на 11 3) если число делится на несколько взаимно простых чисел, то оно делится и на
Ответы (1)
Мат. индукция: 1. Докажите, что для любого натурального значения n справедливо утверждение (19 ^n-1) делится на 18. 2. Докажите, что для любого натурального значения n справедливо утверждение (6 (в степени 2n+1) + 1) делится на 7
Ответы (1)
Определите истинность следующих утверждений: а) Если целоее число а делится на 7, то число 3 а делится на 7 б) Если целое число b делится на 5, то число 4b делится на 20 в) Если целое число 3 с делится на 8, то число с делится на 8 г) Если целое
Ответы (1)
верно ли утверждение6 а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)
Выберите неверное утверждение. А) сумма кубов трёх последовательных натуральных чисел всегда кратна 3 2) разность квадрата любого натурального числа и самого этого числа всегда является четным числом 3) модуль разности квадратов двух
Ответы (2)