Задать вопрос
22 ноября, 06:56

3*5^2x-1-2*5^x=5 помогите!

+1
Ответы (1)
  1. 22 ноября, 09:48
    0
    3*5^2x-1-2*5^x=5 производим замену неизвестного: 5^x=у.

    Получаем квадратное уравнение: 3 у ² - 2 у - 6 = 0.

    Квадратное уравнение, решаем относительно y:

    Ищем дискриминант:D = (-2) ^2-4*3 * (-6) = 4-4*3 * (-6) = 4-12 * (-6) = 4 - (-12*6) = 4 - (-72) = 4+72=76;

    Дискриминант больше 0, уравнение имеет 2 корня:

    y_1 = (2root76 - (-2)) / (2*3) = (2root76+2) / (2*3) = (2root76+2) / 6=2root76/6+2/6=2root76/6 + (1//3) ~~1.7863;

    y_2 = (-2root76 - (-2)) / (2*3) = (-2root76+2) / (2*3) = (-2root76+2) / 6=-2root76/6+2/6=-2root76/6 + (1//3) ~~-1.11963.

    Наверно, в условии задачи что то неточно! Корни должны иметь в ответе 5 в какой то степени.

    Потом приравниваем 5^x = у и х = степени корня у.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «3*5^2x-1-2*5^x=5 помогите! ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы