Задать вопрос
31 августа, 18:58

Как решить задачи? 1) радиус шара равен 37 см. найти площадь сечения, находящегося на расстоянии 12 см от центра шара? 2) радиус основания цилиндра 3 дм, диагональ осевого сечения 10 дм. найти площадь осевого сечения? 3) диаметры оснований усечённого конуса 8 см и 16 см, высота 4 см. найти образующую конуса и площадь осевого сечения?

+2
Ответы (1)
  1. 31 августа, 19:27
    0
    1) Сначала находим радиус сечения, находящегося на расстоянии 12 см от центра шара r = √ (37²-12³) = √ (1369 - 144) = √1225 = 35 cm.

    S = πr² = 3,1416 * 35² = 3848,451 cm².

    2) Диаметр цилиндра равен 2*3 = 6 дм.

    Высота цилиндра Н = √ (10²-6²) = √ (100-36) = √64 = 8 дм.

    S = 6*8 = 48 дм².

    3) Осевое сечение - это трапеция.

    S = ((8+16) / 2) * 4 = 12 * 4 = 48 см ².

    Длина образующей конуса равна √ (4² + ((16 - 8) / 2) ²) = √4² + 4²) =

    = 4√2 = 5,656854 см.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Как решить задачи? 1) радиус шара равен 37 см. найти площадь сечения, находящегося на расстоянии 12 см от центра шара? 2) радиус основания ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1) Образующая конуса равна 24 см 1) Образующая конуса равна 24 см. Угол между образующей и плоскостью основания равен 60 градусов. Вычислите длину высоты и площадь основания конуса. 2) Диагональ осевого сечения цилиндра равна 30 см.
Ответы (1)
Радиусы оснований усеченного конуса равны 10 корней из 3 см и 6 корней из 3 см, а образующая наклонена к плоскости основания под углом 60 найдите высоту усеченного конуса.
Ответы (1)
Радиус основания конуса равен 9 а его высота равна 12 плоскость сечения содержит вершину конуса и хорду основания длина которой равна 10 найдите расстояние от центра основания конуса до плоскости сечения.
Ответы (1)
Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину) Центр сферы совпадает с центром основания конуса. Радиус сферы равен 10√2. Найдите образующую конуса.
Ответы (1)
Радиус основания конуса равен 8, а его высота равна 15. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 14. Найдите расстояние от центра конуса до плоскости сечения.
Ответы (1)