Задать вопрос
9 сентября, 16:27

Том записал несколько различных натуральных чисел, не превосходящих 100. Их произведение не делиться на 18. Какое наибольшее количество чисел мог написать Том?

+3
Ответы (1)
  1. 9 сентября, 17:44
    0
    На 18 делится только 18,36,54,72,90 вычитаем количество этих чисел из 100 получаем 100-5=95 ответ 95 чисел
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Том записал несколько различных натуральных чисел, не превосходящих 100. Их произведение не делиться на 18. Какое наибольшее количество ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Верно ли что число; 85 737 делиться на 2: 11 012 делиться на 4: 10 602 делиться на18: 96 210 делиться на 30: 60 891 делиться на 3 34 656 делиться на 6: 52 215 делиться на 15: 81 135 делиться на 45:
Ответы (2)
Если число делиться на 2 и 3, то оно делиться на 6. Однако общее утверждение "если число делиться на каждое из чисел a и b, то оно делиться на их произведение" не является верным. Так, число 60 делиться на 4 и 6, но не делиться на 24.
Ответы (1)
Пусть А - множество натуральных чисел, не превосходящих 10, В - множество натуральных нечётных чисел, не превосходящих 10, С - множество простых чисел, не превосходящих 10. Запишите множества: а) В∩С б) А∩С в) А∩В
Ответы (1)
Пусть A - множество натуральных четных чисел, не превосходящих 10, B - множество натуральных нечетных чисел, не превосходящих 10. C - множество простых чисел, не превосходящих 10. Найти множество: B (знак пересечения) C
Ответы (1)
Верно ли утверждение?: а) если каждое из двух слагаемых делиться на 2, то их сумма делиться на 2; б) если каждое из двух слагаемых делиться на 5, то и сумма делиться на 5; в) если уменьшаемое и вычитаемое делиться на 3, то и разности делиться на 3?
Ответы (2)