Задать вопрос
24 марта, 09:12

Найти углы четырёхугольника, вписанного в окружность, если угол АДВ равен 43 градуса, угол АСД - 37; угол САД - 22

+1
Ответы (1)
  1. 24 марта, 10:33
    0
    Пошаговое объяснение:

    дано <АДВ=43,<АСД=37 <САД=22 во вписанном 4-х уг-ке суммы противоположных углов = 180 гр. угол дас вписанный и равен половине дуги, на которую опирается, значит дуга дс=44 гр. дуга ад=37*2=74 гр. дуга ав=43*2=86 гр., тогда дуга вс = 360 - (86+44+74) = 360-204=156 гр. впис. угол вад опирается на дугу всд=156+44=200 гр. значит < всд=1/2*200=100 гр.<всд=180-100=80 <авс опирается на дугу адс=74+44=118 гр., значит<авс=118/2=59 гр., тогда <адс=180-59=121 гр.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти углы четырёхугольника, вписанного в окружность, если угол АДВ равен 43 градуса, угол АСД - 37; угол САД - 22 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Каким (острым, тупым, прямым или развернутым) является угол, содержащий 132 градуса, 98 градуса, 35 градуса, 180 градуса, 94 градуса, 99 градуса, 154 градуса, 78 градуса?
Ответы (1)
1. Периметр правильного четырехугольника, вписанного в окружность, равен 40. Найти радиус этой окружности 2. Радиус окружности равен 5. Найдите сторону правильного треугольника, вписанного в эту окружность 3. Площадь круга 16 П (пи).
Ответы (1)
Углы вписанного четырёхугольника равны 70,80,100 и 110 градусов. Стороны, которые образуют наименьший угол четырёхугольника, равны. Найдите градусные меры дуг, на которые вершины четырёхугольника делят окружность
Ответы (1)
Середины сторон четырехугольника являются вершинами вписанного в него другого четырехугольника. Найдите периметр вписанного четырехугольника, если диагонали заданного равны 14 см и 16 см. А) 20 см Б) 45 см В) 15 см Г) 30 см
Ответы (1)
Биссектрисы с уг А И В пересекаются в точ Д Уг ВАС+АВС = уг АДВ Найти уг АДВ
Ответы (1)