Задать вопрос
6 мая, 00:45

Найдите все тройки натуральных чисел x, y и z, для которых 4 (x+y+z) = xy+yz+zx

+4
Ответы (1)
  1. 6 мая, 04:36
    0
    Поскольку равенство симметрично, можно без ограничения общности считать, что x ≤ y ≤ z. Положим y = x + k, а z = x + m, где k и m - неотрицательные целые. Тогда 4 (x + y + z) = xy + yz + zx = > 4 (x + x + k + x + m) = x * (x + k) + x * (x + m) + (x + k) * (x + m) = > 4 (3x + k + m) = x^2 + kx + x^2 + mx + x^2 + mx + kx + km = > 12x + 4 (k + m) = 3x^2 + 2x (k + m) + km = > 3x^2 + 2x (k + m) - 12x + km - 4 (k + m) = 0 = > 3x^2 + (2 (k + m) - 12) x + km - 4 (k + m) = 0. Получили квадратное относительно x уравнение. Находим дискриминант: D = (2 (k + m) - 12) ^2 - 12 (km - 4 (k + m)) = 4k^2 + 4km + 4m^2 - 48k - 48m + 144 - 12km + 48k + 48m = 4k^2 + 4m^2 - 8km + 144. Поскольку x у нас натуральное, дискриминант должен являться полным квадратом. Сразу видим, что поскольку 4k^2 + 4m^2 - 8km = 4 (k^2 + m^2 - 2km) = 4 (k - m) ^2, то при k = m, D = 144. Тогда наше решение будет x (1,2) = - ((2 (k + m) - 12) ± √144) / 6, отсюда x1 = (12 + 12 - 2 (k + m)) / 6 = (24 - 2 (k+m)) / 6 = (24 - 4k) / 6. Отсюда видно, что x1 будет натуральным при k = 0 и k = 3. Его значения будут равны соответственно x1 = 4 и x1 = 2. Второй корень x2 = (12 - 12 - 2 (k + m)) / 6 = - (k + m) / 3 отрицательный и нам не подходит. Тогда, в случае k = m, имеем следующие наборы возможных решений (x, y, z) = (4, 4, 4), (x, y, z) = (2, 5, 5). Непосредственной проверкой убеждаемся, что решение (2, 5, 5) нам не подходит. Т. о. в случае, когда k = m имеем одно решение x = y = z = 4. Обратимся снова к дискриминанту: D = 4k^2 + 4m^2 - 8km + 144. Пусть теперь k ≠ m. Рассмотрим выражение 4k^2 + 4m^2 - 8km = 4 (k^2 + m^2 - 2km) = 4 (k - m) ^2 = 4 (k - m) * (k - m). Как было сказано выше, D в нашем случае должен являться полным квадратом. Т. е. D = 4 (k - m) * (k - m) + 144 = a^2 = > 4 (k - m) * (k - m) = a^2 - 144 = (a - 12) * (a + 12). Отсюда имеем всего одну возможность: a - 12 = k - m и a + 12 = 4 (k - m) = 4 (a - 12) = > 4a - a = 48 + 12 = > 60 = 3a = > a = 60/3 = 20. Т. о. дискриминант D = 4k^2 + 4m^2 - 8km + 144 = 20^2 = 400 = > 4 (k^2 + m^2 - 2km) + 144 = 400 = > 4 (k^2 + m^2 - 2km) = 256 = > k^2 + m^2 - 2km = 256/4 = 64 = > (k - m) ^2 = 64 = > k - m = 8 и k = m + 8. Т. о. при неотрицательных целых m, нам подходят k = m + 8. Ввиду симетрии уравнения, обратное ведет к одинаковым решениям. Общее решение имеет вид x (1,2) = - ((2 (k + m) - 12) ± √400) / 6. Рассмотрим граничные значения k и m, при которых дискриминант остается неотрицательным. D ≥ 0 при |12 - 2 (k + m) | ≤ 20. Этому условию соответствуют пары (k, m) = (8, 0), (9, 1), (10, 2), (11, 3) и (12, 4). Соответствующие значения x будут 16/6, 2, 8/6, 2/3 и 0. Из этих значений x нам подходит лишь одно x = 2. При x = 2, y = x + k = 2 + 9 = 11, z = x + m = 2 + 1 = 3 и мы получаем тройку (x, y, z) = (2, 11, 3). Проверим это решение. Левая часть уравнения 4 (x + y + z) = xy + yz + zx является четным числом, тогда как правая при нечетных y и z будет нечетной. Следовательно, данное решение нам не подходит. Т. о. получаем, что единственным решением данного уравнения является тройка чисел (x, y, z) = (4, 4, 4).

    Ответ: (x, y, z) = (4, 4, 4).
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите все тройки натуральных чисел x, y и z, для которых 4 (x+y+z) = xy+yz+zx ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы