Задать вопрос
30 января, 03:04

Корни квадратного уравнения x^2 * px*q = 0 являются целыми числами.

Найти p и q, если p + q=112.

+3
Ответы (1)
  1. 30 января, 06:30
    +2
    Корни уравнения x^2 + px + q = 0 - это целые числа x1 и x2.

    По теореме Виета

    x1 + x2 = - p

    x1*x2 = q

    По условию

    p + q = - x1 - x2 + x1*x2 = 112

    Выразим x2 через x1

    x2 * (x1 - 1) = 112 + x1

    x2 = (112 + x1) / (x1 - 1) = (x1 - 1 + 113) / (x1 - 1) = 1 + 113 / (x1 - 1)

    Так как x1 и x2 - целые, то 113 делится на (x1 - 1) нацело.

    Но 113 - простое число, 113 = 1*113 = (-1) (-113), значит:

    1) x1 - 1 = 1; x1 = 2; x2 = 1 + 113/1 = 114

    x^2 + px + q = (x - 2) (x - 114) ; p = - 116; q = 228

    2) x1 - 1 = 113; x1 = 114; x2 = 1 + 113/113 = 2; p = - 116; q = 228

    3) x1 - 1 = - 1; x1 = 0; x2 = 1 + 113 / (-1) = - 112; p = 112; q = 0

    4) x1 - 1 = - 113; x1 = - 112; x2 = 1 + 113 / (-113) = 0; p = 112; q = 0
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Корни квадратного уравнения x^2 * px*q = 0 являются целыми числами. Найти p и q, если p + q=112. ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы