Задать вопрос
14 сентября, 10:57

Вот такая вот задача:

Угол между плоскостями α и β равен 60°. Точка A лежит в плоскости α. Найдите расстояние от точки А до плоскости β, если расстояние от точки А до линии сечения плоскости равно 6 см.

+2
Ответы (1)
  1. 14 сентября, 12:47
    0
    Расстояние АС от точки А до плоскости β - это перпендикуляр к плоскости β. АВ - расстояние от точки А до линии пересечения плоскостей. Треугольник АВС прямоугольный с прямым углом С. Угол В по условию равен 60°, значит угол А равен 30°. Катет СВ лежит против угла в 30°, он равен половине гипотенузы, СВ = 3. По теореме Пифагора АС² + ВС² = АВ², значит АС = √ АВ² - ВС² = √ 36 - 9 = √25 = 5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Вот такая вот задача: Угол между плоскостями α и β равен 60°. Точка A лежит в плоскости α. Найдите расстояние от точки А до плоскости β, ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы