Задать вопрос
15 июня, 09:47

Доказать, что в следующих случаях две данные прямые пересекаются, и найти точку их пересечения:

x+5y-35=0

3x+2y-27=0

+3
Ответы (1)
  1. 15 июня, 10:49
    0
    Прямые пересекаются, если коэффициенты при неизвестных не пропорциональны:

    1:3≠5:2; 1/3≠5/2⇒прямые пересекаются

    Чтобы найти точку пересечения, нужно решить систему:

    x+5y=35

    3x+2y=27=0

    Решаем способом подстановки:

    x=35-5y

    3 (35-5y) + 2y=27

    105-15y+2y=27

    13y=105-27⇒13y=78⇒

    y=6

    x=35-5*6=35-30=5

    Ответ: x=5; y=6

    (5; 6) - точка пересечения
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Доказать, что в следующих случаях две данные прямые пересекаются, и найти точку их пересечения: x+5y-35=0 3x+2y-27=0 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Какое из утверждений верно 1) скрещивающиеся прямые не пересекаются и не лежат в одной плоскости 2) две прямые в пространстве всегда пересекаются 3) две прямые на плоскости всегда пересекаются 4) прямые, лежащие в параллельных плоскостях,
Ответы (1)
Какое высказывание о параллельности праямых является верным, a) если две параллельные прямые продолжить то они могут пересечься б) две параллельные прямые имеют множества точек пересечения в) две параллельные прямые имеют только одну точку
Ответы (1)
Выберите верные утверждения две различные прямые могут иметь одну общую точку две различные прямые могут иметь более одной общей точки через две точки можно провести две различные прямые две различные прямые могут не иметь общих точек
Ответы (1)
Выберите верные утверждения: А) две различные прямые могут иметь одну общую точку Б) две различные прямые могут иметь более одной общей точки. В) через две точки можно провести две различные прямые Г) две различные прямые могут не иметь общих точек.
Ответы (2)
1. начерти две пересекающиеся прямые так, чтобы точка пересечения находилась на этом же листе. отметь точку пересечения. 2. начерти две пересекающиеся прямые так, чтобы точка пересечения не находилось на этом же листе.
Ответы (1)