Задать вопрос
6 марта, 19:30

Приведите пример таких положительных иррациональных чисел а и b (a, b>0), что

при любом натуральном n

{a*n}+{b*n}=1 (Можно привести экзотический пример с логарифмами)

+1
Ответы (1)
  1. 6 марта, 23:04
    0
    Подойдут, например, (ln π) и (2014 - ln π) или lg2 и lg5 - любые 2 иррациональных числа, сумма которых является целым числом.

    Если рассмотреть a и (m - a) (а иррационально, m целое), то { (m - a) n} = {mn - an} = {1 - an}, так что {an} + {1 - an} = 1
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Приведите пример таких положительных иррациональных чисел а и b (a, b>0), что при любом натуральном n {a*n}+{b*n}=1 (Можно привести ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы