Задать вопрос
27 июля, 21:13

Медианы треугольника ABC, проведенные из вершин B и C, пересекаются под прямым углом. Найдите длину медианы треугольника, проведенной из вершины A, если BC = 42 см

+5
Ответы (1)
  1. 28 июля, 00:52
    0
    Треугольник АВС, СК перпендикулярна ВН, АМ - медиана на ВС, точка О - пересечение медиан, треугольник ВОС прямоугольный, ОМ-медиана треугольникаВОС=1/2 ВС=42/2=21, в точке пересечения медианы делятся в отношении 2:1 начиная от вершины, АО=2*РМ=2*21=42, АМ=42+21=63
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Медианы треугольника ABC, проведенные из вершин B и C, пересекаются под прямым углом. Найдите длину медианы треугольника, проведенной из ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Медианы треугольника ABC, проведенные из вершин B и C, пересекаются под прямым углом. Найдите длину стороны BC, если длина медианы треугольника, проведенной из вершины A, равна 18 см.
Ответы (1)
Медианы треугольника АВС, проведенные из вершин В и С, пересекаются под прямым углом. Найдите длину стороны ВС, если длина медианы треугольника, проведенной из вершины А, равна 18 см.
Ответы (1)
Докажите, что в равнобедренном треугольнике: а) биссектрисы, проведённые из вершин основания, равны; б) медианы, проведённые из вершин основания, равны.
Ответы (1)
Две стороны АВ и ВС треугольника АВС равны 12 и 16. Медианы, проведенные к серединам этих сторон, пересекаются под прямым углом. Найти сторону АС треугольника.
Ответы (1)
На плоскости даны вершины треугольник А (0; -4) ; В (-2; 1) ; С (4; 0). а) Составить уравнения сторон треугольника б) Уравнение медианы, проведенной из вершины С в) Найти точку пересечения медиан г) Составить уравнение высоты, проведенной из вершины
Ответы (1)