Задать вопрос
2 марта, 17:16

В равнобедреному треугольнике АВС (АВ=ВС) биссектриса АД делит боковую сторону в отношении ВД=ДС=5:6. Найти расстояние между точкой пересечения медиан и точкой пересечения биссектрис этого треугольника если его периметр равен 32 см

+1
Ответы (1)
  1. 2 марта, 19:44
    0
    Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД - биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В равнобедреному треугольнике АВС (АВ=ВС) биссектриса АД делит боковую сторону в отношении ВД=ДС=5:6. Найти расстояние между точкой ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы