Задать вопрос
30 декабря, 18:29

В треугольнике ABC o - точка пересечения медиан. Выразите вектор AO через векторы a = AB и b = AC.

+3
Ответы (1)
  1. 30 декабря, 20:43
    0
    Пусть АК - медиана, тогда

    по свойствам векторов

    вектор АК=вектор АС+вектор СК

    вектор АК=вектор АВ+вектор ВК

    2*вектор АК=вектор АС+Вектор СК+вектор АВ+вектор ВК=вектор АС+вектор АВ

    (так как векторы СК и ВК равны по модулю и противположные за направением)

    вектор АК=1/2 * (вектор АС+вектор АВ)

    Медианы точкой пересечения делятся в отношении 2:1 начиная от вершины,

    поэтому

    вектор АО=2/3*вектор АК

    вектор АО=2/3*1/2 вектор (АС+АВ) = 1/3 * (a+b)

    ответ: 1/3 * (a+b)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике ABC o - точка пересечения медиан. Выразите вектор AO через векторы a = AB и b = AC. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы