Задать вопрос
7 августа, 18:11

В треугольнике abc проведены медианы AK и BM пересекающиеся в точке О. Докажите, что площади треугольников MOK и AOB относятся как 1:4.

+5
Ответы (1)
  1. 7 августа, 20:35
    0
    треугольники ABO и KMO подобны. Медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. OM:BO=1:2, OK:AO=1:2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия k=1/2. От сюда следует, что отношение площадей треугольников MOK и AOB равно 1/2 в квадрате. Или же 1:4. Ч. т. д.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике abc проведены медианы AK и BM пересекающиеся в точке О. Докажите, что площади треугольников MOK и AOB относятся как 1:4. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы