Задать вопрос
26 января, 18:59

Отрезок AB - диаметр окружности, точка C - точка, лежащая на окружности, CF - перпендикуляр, проведённый из точки C к прямой AB. Вычислите площадь треугольника ABC, если FB=9 см, CF = 4 см

+4
Ответы (1)
  1. 26 января, 19:56
    0
    Если АВ - диаметр и С лежит на окружности, то угол АСВ прямой, треугольник АВС прямоугольный, а CF - высота, проведенная из прямого угла к гипотенузе. Тогда ее квадрат равен произведению частей, на которые точка F делит гипотенузу - по известной теореме AF = 16/9. АВ = AF + FB = 16/9 + 9 = 97/9. Площадь треугольника АВС равна S = 1/2*AB*CF = 1/2*97/9*4 = 21 5/9 кв. см.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Отрезок AB - диаметр окружности, точка C - точка, лежащая на окружности, CF - перпендикуляр, проведённый из точки C к прямой AB. Вычислите ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии