Задать вопрос
27 июня, 21:13

Из вершины А треугольника ABC проведены перпендикуляры AM и АК к биссектрисам внешних углов этого треугольника при вершинах B и С. Докажите, что отрезок МК равен половине периметра треугольника ABC.

+2
Ответы (1)
  1. 27 июня, 23:13
    0
    Продолжим AM и AK до пересечения с прямой BC в точках S и T соответственно. По условию, BM - биссектриса и высота треугольника ABS. Значит ABS - равнобедренный (AB=SB) и BM - его медиана. Аналогично, CK - медиана равнобедренного ACT (AC=CT). Таким образом, ST=SB+BC+CT=AB+BC+AC и MN - средняя линия треугольника AST. Т. е. MN=ST/2 = (AB+BC+AC) / 2.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Из вершины А треугольника ABC проведены перпендикуляры AM и АК к биссектрисам внешних углов этого треугольника при вершинах B и С. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы