Задать вопрос
21 августа, 02:52

На доске записаны несколько разных натуральных чисел. Ровно два из них деляться на 2 и ровно 13 из них делятся на 13. Пусть М - наибольшее среди этих чисел. Чему равно наименьшее возможное значение М?

+2
Ответы (1)
  1. 21 августа, 06:21
    0
    Тогда, будет записано не более 12 чисел, и при этом, с одной стороны, последовательность будет начата с минимального числа, кратного 13, а с другой стороны, в последовательности чётные числа будут также кратны 13. Таким образом, начало последовательности должно выглядеть так: 13, 26, 39, 52, 65. Далее, чтобы сохранить нечетность членов последовательности, нужно прибавлять к каждому предыдущему чётное число, кратное 13, т. е. 26. При этом остаётся найти 7 чисел, последнее из которых будет равно 65+7*26=65+182=247. Это и есть минимально возможное М
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «На доске записаны несколько разных натуральных чисел. Ровно два из них деляться на 2 и ровно 13 из них делятся на 13. Пусть М - наибольшее ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
А) Приведите пример десяти таких различных двузначных чисел, среди которых ровно 5 делятся на 3, ровно 5 делятся на 5, ровно 5 делятся на 7 и ровно 3 делятся на 15.
Ответы (1)
На доске записаны два натуральных числа 672 и 560 за один ход разрешается любое из этих чисел заменить модулем их разности либо уменьшить вдвое (если число четное) а) Может ли через несколько ходов на доске оказаться два одинаковых числа?
Ответы (1)
Придумайте восемь натуральных различных чисел, из которых ровно два делятся на 2, ровно три делятся на 3, ровно пять делятся на 5 и ровно семь делятся на 7.
Ответы (1)
На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, сумма которых делится на 3.
Ответы (1)
1) На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002. Какие числа остались на доске? 2) На доске были написаны 10 последовательных натуральных чисел.
Ответы (1)