Задать вопрос
23 июля, 20:31

доказать что число 207^5-72^6 делится на 9

+2
Ответы (1)
  1. 23 июля, 22:44
    0
    1__Для начала признаки делимости на 9:

    "Число делится на 9, если сумма его цифр делится на 9";

    2___также если один из множителей делится на число "а", то и произведение делится на число "а"

    3___А вот Сумма/разность, делится на число "а", если все ее члены делятся н это число.

    теперь, все просто, число "207"=2+0+7=9,9 делится на 9 (1), следовательно 207^5 делится на 9 из (2) {207*207*207*207*207};

    "72"=7+2=9, 9 делится на 9 (1), следовательно 72^6 делится на 9 из (2) ;

    И исходя из выше названных причин и упираясь на свойство (3), можно сделать вывод, что 207^5-72^6 делится на 9.

    ч. т. д.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «доказать что число 207^5-72^6 делится на 9 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы