Задать вопрос
20 октября, 22:17

пример 1 алгебра помогите

если производная f (x) равна f ' (x) = (х-3) ^2 (x^2-1) (x^2-9)

то найдите сумму длин промежутков убывания функции

+2
Ответы (1)
  1. 21 октября, 01:01
    0
    Ну Вы же умеете решать неравенства? Когда есть куча скобочек и нужно на числовой прямой отметить нули функции?

    f' (x) = (x - 3) ^2 (x - 1) (x + 1) (x - 3) (x + 3) - разложила две скобочки по формуле разности квадратов.

    f' (x) = (x - 3) ^3 (x - 1) (x + 1) (x + 3)

    Нули функции: - 3, - 1, 1, 3.

    Определяем знаки на промежутках: +, -, +, -, +.

    Функция убывает на тех промежутках, где производная отрицаельна, то есть, (-3; - 1) U (1; 3).

    Длина промежутка - из правой границы вычитаем левую. - 1 + 3 и 3 - 1. 2 и 2. Ну а 2 + 2 = 4.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «пример 1 алгебра помогите если производная f (x) равна f ' (x) = (х-3) ^2 (x^2-1) (x^2-9) то найдите сумму длин промежутков убывания функции ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы