Задать вопрос
15 октября, 22:55

Из точки А, лежащей вне окружности с центром в точке О, к этой окружности проведены две касательные. Докажите, что отрезок, соединяющий точки касания, перпендикулярен отрезку АО.

+4
Ответы (1)
  1. 16 октября, 01:02
    0
    Пусть точки касания будут В и С. Соединим ВО и СО. Это получились радиусы окр-ти. Тогда треуг-к ОВС равнобедренный и углы при основании равны: <СВО=<ВСО. Но радиусы, проведённые в точку касания, перпендикулярны касательным АВ и АС. Тогда <АВО=<АСО=90. ΔАОВ=ΔАОС (по трем сторонам, т. к. ОВ=ОС, ОА-общая, АВ=АС как отрезки касательных, проведенных из одной точки.) Тогда <АОВ=<АОС. Обозначим точку пересечения ВС и АО через К. Значит ОК (ОА) - биссектриса равнобедренного Δ, а значит и высота. ОА перпенд-на ВС.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Из точки А, лежащей вне окружности с центром в точке О, к этой окружности проведены две касательные. Докажите, что отрезок, соединяющий ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы