Задать вопрос
22 января, 10:46

напишите уравнение всех тех касательных к графику функций f (x) = 4tgx+1, которые параллельны прямой у=4 х+5

+1
Ответы (1)
  1. 22 января, 12:50
    0
    Условие параллельности прямых - равенство коэффициентов при аргументе, т. е. к1 = к2.

    Чтобы касательные к графику функций f (x) = 4tgx+1 были параллельны прямой у=4 х+5 у них коэффициент тоже быть равен 4.

    К оэффициент при аргументе в уравнении касательных равен производной функций f (x) = 4tgx+1:

    d/dx = 4 / cos^2 x.

    Выражение может быть равно 4 при знаменателе, равном 1:

    cos^2 x. = 1

    cos x. = 1

    x = arc cos 1 = 2*к*пи, где к - любое целое число (положительное, отрицательное или нуль), при х = 0 у = 1.

    Отсюда главное значение касательной: у = 4 х + 1. при у = 0 х = - 1/4 = - 0,25.

    Поскольку функция 4tgx+1 периодическая с периодом пи (tg (x+-k*пи) = tg х),

    то все касательные будут иметь вид у = 4 х + С, где С = (-к*пи*х + 0,25) * 4
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «напишите уравнение всех тех касательных к графику функций f (x) = 4tgx+1, которые параллельны прямой у=4 х+5 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы