Задать вопрос
6 января, 14:26

Существует ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 11?

+3
Ответы (1)
  1. 6 января, 14:35
    -1
    Предположим, что существуют два таких числа. Возьмём некое число а, сумма цифр которого делится на 11. Тогда обязательно будет сущестовать число b, отличное от а на единицу и кратное 11. Но это невозможно, т. к. сумма цифр последовательных чисел может не может изменяться на й

    11. Значит, предположение неверно. То есть таких чисел не существует.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Существует ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 11? ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Выберите 3 верных утверждения: 1) число делится на 4 если последние две цифры образуют число кратное четырем 2) число делится на 11, если сумма его цифр делится на 11 3) если число делится на несколько взаимно простых чисел, то оно делится и на
Ответы (1)
Докажите что: 1) сумма четырёх последовательных четных натуральных делится нацело на 7 2) сумма пяти последовательных четных натуральных чисел делится нацело на 10
Ответы (1)
Какое утверждение неверно? а) среди натуральных чисел есть наименьшее в) если сумма цифр натурального числа делится на 3 то это число делится на 3 с) произведение двух последовательных натуральных чисел четное число д) нечетные числа-простые числа
Ответы (2)
верно ли утверждение6 а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)
1.1. а) Сколько существует натуральных чисел, меньших 100 и делящихся на 3? б) Сколько существует натуральных чисел, меньших 100 и делящихся на 6? в) Сколько существует натуральных чисел, меньших 100 и делящихся на 27? Докажите что: 1.2.
Ответы (1)