Задать вопрос
20 марта, 17:19

Прямоугольный лист 210 мм * 297 мм требуется разрезать без остатка на прямо-

угольники одинакового размера, у которых длина будет вдвое больше ширины. Какой

может быть максимальная площадь одного такого прямоугольника? Докажите, что

она максимальна.

+5
Ответы (1)
  1. 20 марта, 20:01
    0
    Пусть ширина искомого прямоугольника равна Х мм (не обязательно целое). Тогда его площадь равна 2 Х². Таким образом, площадь будет максимальна, если Х - максимально. Так как длина в 2 раза больше ширины, то при любом разрезании удовлетворяющем условию, в исходный лист должно уложиться целое число квадратиков Х*Х (а значит Х должно укладываться вдоль каждой стороны целое число раз), т. е. 297=nX и 210=mX, где n, m - натуральные. Тогда X=297/n=210/m, откуда n=297m/210=99m/70. Так как 99 и 70 - взаимно простые, то чтобы n было целым, m должно быть кратно 70. Кроме того, чтобы Х было максимальным n и m должны быть минимально возможными, т. е. m=70, n=99, X=3. Т. е. имеем прямоугольники 3 мм * 6 мм площадью 18 мм².

    Очевидно, что такое разрезание возможно: 35 прямоугольников 6*3 укладываем длинной стороной вдоль края листа длиной 210=6*35 мм. 99 таких рядов по 35 прямоугольников дают целый лист длиной 99*3=297 мм. Итак, ответ: максимальная площадь у прямоугольника 3*6=18 мм².
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Прямоугольный лист 210 мм * 297 мм требуется разрезать без остатка на прямо- угольники одинакового размера, у которых длина будет вдвое ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы