Задать вопрос
14 июня, 02:35

Сколько шестизначных четных чисел можно составить из цифр 1; 3; 4; 8; 9; 7, если каждую цифру можно брать только один раз?

+2
Ответы (1)
  1. 14 июня, 04:23
    0
    Если Вы не изучали комбинаторики, то эту задачу можно решить так:

    Первой (старшей) цифрой числа может быть любая из шести указанных цифр. После того, как Вы выбрали первую цифру (шестью разными способами), следующую цифру Вы можете выбрать из 5 оставшихся и т. д. Т. е. всего получится 6*5*4*3*2*1=720 различных чисел. Знакомые с комбинаторикой сразу скажут, что число различных чисел, составленных из шести различных цифр при условии, что ни в одном из этих чисел нет одинаковых цифр равно числу перестановок из этих шести цифр, т. е. 6!=1*2*3*4*5*6=720. Т. к. среди 6 цифр: 1, 3, 8, 4, 9, 7 только 2 четные (8 и 4), то среди полученных 720 чисел четных будет (2/6) * 720=240.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Сколько шестизначных четных чисел можно составить из цифр 1; 3; 4; 8; 9; 7, если каждую цифру можно брать только один раз? ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
1. Сколько можно составить 3-х значных чисел из цифр 3; 8 и 9? 2. Сколько можно составить 3-х значных чисел из цифр 3; 8 и 9 без повторений? 3. Сколько можно составить 3-х значных чисел из цифр 0; 8 и 9? 4.
Ответы (1)
Колько шестизначных четных чисел можно составить из цифр 1; 3; 4; 8; 9; 7, если каждую цифру можно брать только один раз
Ответы (1)
5. 3. Сколько четных пятизначных чисел можно образовать из цифр 0, 1, 2, 3, 4, при условии, что каждая цифра входит в пятизначное число только один раз? 5. 4.
Ответы (1)
Сколько нечетных шестизначных чисел можно составить из цифр 1 2 3 4 5 6, если каждую цифру в числе можно использовать только один раз?
Ответы (1)
Из четырех цифр один ученик составил четырёхзначное число, используя каждую цифру один раз. Затем второй ученик из тех же цифр составил другое четырехзначное число, также используя каждую цифру один раз.
Ответы (1)