Задать вопрос
29 июля, 21:49

Найдите наименьшее значение функции y = (18/x^2) + (x^2/2)

+2
Ответы (1)
  1. 30 июля, 00:52
    0
    Производная для этой функции

    y' = - 36/x^3+x

    y' = 0 - точка локального экстремума

    -36/x^3+x=0 - > x^4=36 - > x=√6

    значение функции y (√6) = 3+3=6
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите наименьшее значение функции y = (18/x^2) + (x^2/2) ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
1. Дайте определение функции, периодичной функции. Что такое T? Приведите пример периодических функций и расчета периода функции. 2. Дайте определение функции, нулей функции. Приведите пример нахождения нулей функции. 3.
Ответы (1)
У=-2 х+5 Область определения функции 2. Область значений функции 3. Чётность/нечетность функции 4. Нули функции 5. Промежутки знакопостоянства 6. Промежутки возрастания/убывания функции 7. Наибольшее и наименьшее значения функции 8.
Ответы (1)
Найдите производную y'функции y=sin⁡〖 (x^3+1) 〗. Найдите производную y'функции y=ctg (3πx). Найдите производную y'функции y=cos (lg⁡x). Найдите производную y'функции y=tg2^x. Найдите производную y'функции y=ln⁡〖 (3x-1) / 5〗.
Ответы (1)
Постройте график функции y=-x^2-4x+5 А) Найдите промежутки возрастания функции; Б) Найдите промежутки убывания функции; В) Найдите наибольшее значение функции; Г) При каких значениях аргумента, значение функции больше - 7?
Ответы (1)
Постройте график функции у=х^2 с помощью графика найдите: а) значения функции при значении аргумента, равным - 2, 1, 3 б) значение аргумента, если значение функции равно 4 в) наибольшее и наименьшее значении функции на отрезке [-3; 0]
Ответы (1)