Задать вопрос
6 ноября, 16:42

Биссектрисы треугольника АВС пересекаються в точке О. причём угол АОВ=углу ВОС=110 градусов. а) Докажите что треугльник АВС равноберенный. и укажите его основание. б) Найдите углы данного треугольника

+1
Ответы (1)
  1. 6 ноября, 20:14
    0
    треугольник АОВ=треугольнику ВОС по стороне и двуи прилежащим к ней углам. У них ОВ-общая, угол АОВ=углу ВОС по условию, угол АВО=углу СВО, так как ВО-биссектриса У равных треугольников соответственные стороны равны, поэтому АВ=ВС и треугольник АВС-равнобедренный с основанием АС.

    АОВ=110 градусов, 1/2 угла А+1/2 углаВ+110 градусов=180 градусов,

    1/2 (уголА+уголВ) = 180 градусов-110 градусов=70 градусов

    угол А+уголВ=70 градусов*2=140 градусов, тогда

    угол С=180 градусов - 140 градусов=40 градусов. Так как треугольник равнобедренный то у него углы при основании равны, угол А=40 градусов, угол В=180 градусов - (40+40) = 100 градусов

    ответ 40 градусов, 40 градусов, 100 градусов.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Биссектрисы треугольника АВС пересекаються в точке О. причём угол АОВ=углу ВОС=110 градусов. а) Докажите что треугльник АВС равноберенный. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы