Задать вопрос
2 апреля, 10:06

Основание пирамиды - трапеция с боковыми сторонами 6 см и 9 см. Найдите объем пирамиды, если все ее боковые грани составляют с основанием равные двугранные углы по 60, а высота пирамиды равна 2 корня из 3 см.

+1
Ответы (1)
  1. 2 апреля, 12:28
    0
    Решение:

    Поскольку все боковые грани составляют с основанием равные двугранные углы, то в трапецию-основание можно вписать окружность (радиуса 2√3/tg 60° = 2). Это означает, что сумма боковых сторон трапеции равна сумме её оснований. Средняя линия равна полусумме оснований, то есть полусумме боковых сторон, то есть (6+9) / 2 = 15/2. Высота трапеции равна диаметру вписанной окружности, то есть 2·2 = 4. Площадь трапеции равна 15/2·4 = 30. Vпиромиды = 1/3·30·2√3 = 20√3.

    Ответ: 20√3.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Основание пирамиды - трапеция с боковыми сторонами 6 см и 9 см. Найдите объем пирамиды, если все ее боковые грани составляют с основанием ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы