Задать вопрос
11 февраля, 21:55

Каждую сторону выпуклого четырехугольника продолжили в обе стороны и на всех восьми продолжениях обозначили равны между собой отрезки. Оказалось, что 8 точек, которые были получены - внешние концы построенных отрезков - разные и принадлежат одному кругу. Докажите, что начальный четырехугольник - квадрат.

+5
Ответы (1)
  1. 11 февраля, 22:32
    0
    Если соединить концы равных отрезков, исходящих из одной вершины, то получится равнобедренный треугольник. Углы при его основании равны.

    Легко видеть, что у других аналогичных треугольников такие же углы - поскольку все эти углы вписанные, и можно для любого такого угла указать угол из другого треугольника, опирающийся на эту же дугу.

    Это означает, что равны все углы при вершинах. То есть у исходного четырехугольника равны все углы. Получилось, что этот четырехугольник - заведомо прямоугольник.

    Остается заметить, что в самом общем случае, если точка пересечения двух хорд отсекает на них пару равных отрезков, то эти хорды равны.

    Это, кстати, не такое уж и тривиальное утверждение. Оно легко доказывается, поскольку у двух окружностей может быть не более 2 общих точек, симметричных относительно линии центров.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Каждую сторону выпуклого четырехугольника продолжили в обе стороны и на всех восьми продолжениях обозначили равны между собой отрезки. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Четырёхугольник является правильным, если 1) все его углы равны между собой 2) все его стороны равны между собой 3) все его стороны равны между собой, а углы не равны между собой 4) все его углы равны между собой и все его стороны равны между собой
Ответы (2)
Какие из следующих утверждений верны? 1) Если противоположные углы выпуклого четырехугольника равны, то этот четырехугольник - параллелограмм. 2) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Ответы (1)
Каждая из сторон равностороннего треугольника АВС продолжена: АВ - за вершину В, ВС - за вершину С, СА - за вершину А; на продолжениях отложены отрезки одинаковой длины, и концы их соединены между собой. Определить вид полученного треугольника.
Ответы (1)
Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника равны, длины диагоналей этого четырёхугольника равны 6 и 8. Найдите площадь четырёхугольника.
Ответы (1)
Сторону AB треугольника ABC продолжили за вершину B и выбрали на луче AB точку A1 так, что точка B - середина отрезка AA1. Сторону BC продолжили за вершину C и отметили на продолжении точку B1 так, что C - середина BB1.
Ответы (1)