Задать вопрос
7 июля, 16:22

Доказать, что среди произвольных шести чисел есть два таких, разница которых делится на пять.

+3
Ответы (1)
  1. 7 июля, 16:50
    0
    Пусть а1, а2, а3, а4, а5, а6 - данные числа в порядке возрастания

    при делении на 5, они могут давать остатки 0,1,2,3,4 (5 разных остатков). Значит найдутся два числа, которые будут давать одинаковый остаток при делении на 5 (всех чисел 6, а остатков 5, хотя бы один остаток встретится дважды). Их разность будет делится на 5

    Доказано.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Доказать, что среди произвольных шести чисел есть два таких, разница которых делится на пять. ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Выберите 3 верных утверждения: 1) число делится на 4 если последние две цифры образуют число кратное четырем 2) число делится на 11, если сумма его цифр делится на 11 3) если число делится на несколько взаимно простых чисел, то оно делится и на
Ответы (1)
верно ли утверждение6 а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)
Определите истинность следующих утверждений: а) Если целоее число а делится на 7, то число 3 а делится на 7 б) Если целое число b делится на 5, то число 4b делится на 20 в) Если целое число 3 с делится на 8, то число с делится на 8 г) Если целое
Ответы (1)
Верно ли высказывание: если а делится на 5, то а делится на 15 если а делится на 30, то а делится на 90 если а делится на 105, то а делится на 35
Ответы (1)
На равномерной квадратной сетке выбрано 5 произвольных узлов. Докажите, что среди этих узлов есть хотя бы 2 таких, что середина соединяющего их отрезка тоже будет узлом сетки.
Ответы (1)