Задать вопрос
23 июня, 11:59

Решить уравнение: cosx+cos2x+cos6x+cos7x=0

+2
Ответы (1)
  1. 23 июня, 15:08
    0
    (cos7x+cosx) + (cos6x+cos2x) = 2cos4x*cos3x+2cos4x*cos2x=2cos4x (cos3x+cos2x) = 2cos4x*2cos (5x/2) * cos (x/2) = 4*cos4x*cos (5x/2) * cos (x/2) = f (x) ;

    f (x) = 0;

    cos4x=0;

    4x=π/2+πn. n∈Z.

    x=π/8+πn/4. n∈Z.

    cos (5x/2) = 0;

    5x=π+2πm. m∈Z.

    x=π/5+2πm/5. m∈Z.

    cos (x/2) = 0;

    x=π+2πk. k∈Z.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решить уравнение: cosx+cos2x+cos6x+cos7x=0 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы