Задать вопрос
10 февраля, 15:37

Решить уравнение:

1+lg (х+1) - lg (х в квадрате+7 х+10) = 0

+5
Ответы (1)
  1. 10 февраля, 18:54
    0
    1+lg (x+1) - lg (x²+7x+10) = 0

    ОДЗ х+1>0 x>-1

    x²+7x+10 >0 при любом значении х, х≠-2, х≠-5 т. к

    x²+7x+10=0

    D=49-40=9

    x₁ = (-7+3) / 2=-2

    x₂ = (-7-3) / 3=-5

    1=lg10

    lg10+lg (x+1) - lg (x²+7x+10) = 0

    lg 10 * (x+1) / (x²+7x+10) = 0

    10 * (x+1) / (x²+7x+10) = 10⁰

    10 * (x+1) / (x²+7x+10) = 1

    10 * (x+1) = (x²+7x+10)

    x²+7x+10 - 10x-10 = 0

    x²-3x=0

    x * (x-3) = 0

    x₁=0

    x-3=0 x₂=3
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решить уравнение: 1+lg (х+1) - lg (х в квадрате+7 х+10) = 0 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы